
D. Beyrak, student 

V. Chuhov, PhD in Engr., As. Prof., research advisor 

S. Kobzar, Senior Lecturer, language advisor 

Zhytomyr State Technological University  

 

DYNAMIC PLOT OF DIGITIZED DATA IN WOLFRAM 

MATHEMATICA 10 

 
In spite of the fact that nowadays most of the modern physical quantity measuring 

devices are digital, for this kind of concerns analog devices are also used. Consequently, 
there raises the need for digitizing, saving and further use of the captured data. This can 
be done if a device has the analog output.  

In this paper we will focus on the problem of convenient processing of the 
digitized data array drawing on the example of computation program Wolfram 
Mathematica 10, considering the typical steps of transforming an original set of values 
{a1, a2, …} into the graphic rendition. The issues of choosing and setting up the analog-
digital converter are not covered here.  

Besides having the actual set of values, it is also necessary to know the end values 
for every axis to be able to make a plot with correct scales. These values can be measured 
directly with the analog device and then taken into account in the program during the 
plotting.  

Suppose the digitized signal is obtained in .wav format. Then to import it as a set 
of points in variable data, it is possible to use the Import function with specificator 

"Data". For example: 
data = Import["C:\\Directory\\file.wav", "Data"] 

As a result, there have to be the set of the kind shown in Figure 1. 

 

Figure 1. Imported set of values 

Note that the original set of data can be stored in other formats. Visit the help page 

of the Import function to see the rest of the ways of importing by placing the mouse 

cursor on the function and pressing the “F1” key. 

Sometimes it may be handy to normalize the set of original values in range from 0 

to 1. This can be done by using the Rescale function. Besides that, the measurements 

are often made in logarithmic scale, so it is worth making delogarithmation of original 

set. These actions can be done with the following functions: 

ndata = Rescale[data]; 

delogdata = 20^ndata; 

Next, let us generate the set of points, which suits the scale of the x-axis. We will 

store the lowest and the highest axis points in variables xmin and xmax accordingly and 



use the Range function for obtaining the set. The Length function is used here for 

getting the cardinality value of the original set, and the equation, it appears in, defines the 

generating step:  

xmin = 25.86; xmax = 37.5; 

axisx = Range[xmin, xmax, (xmax - xmin)/Length[data[[1]]]]; 

Now let us construct the y-axis. To do this we will define the limits as in the 

previous example, but use the Rescale function for remapping the elements of the 

original, normalized or delogarithmized set pursuant to the real axis limits. The MinMax 

function is used here for finding the maximum and minimum values of the transmuted 

set. These values stand as arguments of the Rescale function. 

ymin = 0.3; ymax = 1.125; 

axisy = Rescale[delogdata, MinMax[delogdata], {ymin, 

ymax}][[1]]; 

At this point, the values for each axis are ready to be plotted. But to be able to plot 

using functions such as ListPlot, ListLogPlot and alike it is necessary to 

transform data to the form like {{xi, yi}}. It can be done via functions Riffle and 

Partition: 

plotdata = Partition[Riffle[axisx, axisy], 2]; 

Considering that in this example the original data are in logarithmic scale of the y-

axis, let us plot using the ListLogPlot function. It can have many arguments, but the 

most useful that we will utilize are as follows: ImageSize for changing the size of the 

image, Joined for joining the plot points, GridLines for activating the gridlines and 

AxesLabel for labeling the axes:  

ListLogPlot[plotdata, ImageSize -> 500, Joined -> True, 

GridLines -> Automatic, AxesLabel -> {"f, GHz", "A, dB"}] 

It is important to underscore the fact that to view the output, the semicolon “;” at 

the end of the line has to be absent. Also, sometimes when the amount of points is low 

there arises the need to “smooth” the plot, so that it does not look broken. This can be 

done by interpolation, using InterpolationOrder as an argument. For the most part 

its values are in range from 2 to 4. However, if the plot consists of a large amount of 

points, interpolation is not reasonable.  

While taking the plot reading, it can be useful to get rid of the noise, which is an 

integral part of every measurement. Since usually the useful signal is modulated by high 

frequency noise, it is possible to do it away with low pass filter (LP filter) function. In 

addition, note that it is not necessary to feed data into the variable in order to plot. The 

next example shows how to plot the filtered data without using variables for them.  

ListLogPlot[Partition[Riffle[axisx, LowpassFilter[axisy, 

0.02]], 2], ImageSize -> 500, Joined -> True, GridLines -> 

Automatic, AxesLabel -> {"f, GHz", "A, dB"}] 

In this example, the 0.02 filter value was chosen. Apart from the LP filter, 

Wolfram Mathematica has other functions for “smoothing” plots, which may appear 



more suitable for other cases. For instance, GaussianFilter and MeanFilter can 

be used. As for the example above the values 3 and 50 respectively should be 

recommended. The plots of the signal with the noise unfiltered and filtered by the LP 

filter are shown in Figure 2 a) and b) correspondingly.  

a) b) 

 
Figure 2. Obtained plots: a) no filtering, b) low-pass filtering 

It should be emphasized, when the noise component is significant or causes signal 
bursts that are not useful, it makes sense to apply LP filter (or its analog) directly to the 
imported data:  

data = LowpassFilter[Import["C:\\Directory\\file.wav", 

"Data"], 0.02] 

Such method prevents the raise of errors while setting up axes scales. 
When it is necessary to compare two or more plots, they can be put on the same 

coordinate grid. There are a few ways to do that, but we will consider the simplest one — 

by Show function. It can be done in two ways: by putting the corresponding commands 

into the arbitrary variables beforehand, or straightforwardly. The first method is more 

elegant, but let us consider both (the notation for ListLogPlot is shortened). 

a = ListLogPlot[plotdata1]; 

b = ListLogPlot[plotdata2]; 

Show[{a, b}]  

or 

Show[{ListLogPlot[plotdata1],ListLogPlot[plotdata2]}] 

While taking the readings from the plot it is convenient to use the ability of getting 
coordinates using mouse cursor. It can be done by right-clicking on the desired plot and 
choosing Get Coordinates menu entry. After that, the cruciate cursor and numerical 
values of axes will appear. 

Another practical capability of dealing with plots is dynamic scaling. It can be 

implemented with Manipulate function. Without getting into details — they can be 

found in help documentation — let us consider the simplest example of the code, which 
gives us the two-axes scaling: 

Manipulate[ListLogPlot[Partition[Riffle[axisx,axisy], 

2], ImageSize -> 500, Joined -> True, GridLines -> 

Automatic, Frame -> False, AxesLabel -> {"f, GHz", "A, 

dB"}, PlotRange -> {{minx, maxx}, {miny, maxy}}], {{minx, 



xmin, "x-axis min"}, xmin, Mean[{xmin, xmax}]}, {{maxx, 

xmax, "x-axis max"}, Mean[{xmin, xmax}], xmax}, {{miny, 

ymin, "y-axis min"}, ymin, Mean[{ymin, ymax}]}, {{maxy, 

ymax, "y-axis max"}, Mean[{ymin, ymax}], ymax}] 

The same functionality can also be carried out for combined plots. In order to do 

this, it is enough to put the argument PlotRange into the ListPlot function, e.g.:  

Manipulate[Show[{ListLogPlot[plotdata1, (…), PlotRange -> 

{{minx, maxx}, {miny, maxy}}], ListLogPlot[plotdata1, (…)], 

{{minx, xmin, "x-axis min"}, (…)}] 

In case of multiple measurements with the same device and also for convenience’s 
sake, it is reasonable to take functional approach and roll up all considered operations in 
one function and use it for dynamic plotting afterwards. It provides the ability to use one 
short line-length command. However, this method faces strong system requirements. But 

this problem may be solved by using automatic parallelization function Parallelize. 

Let us consider it for our example: 

Parallelize[quickplot[data_, xmin_, xmax_, ymin_, ymax_] := 

Manipulate[ListLogPlot[Partition[Riffle[Range[xmin, xmax, (xmax - 

xmin)/Length[data[[1]]]],Rescale[20^Rescale[data],MinMax[20^Rescale

[data]], {ymin, ymax}][[1]]], 2], ImageSize -> 500, Joined -> True, 

GridLines -> Automatic, Frame -> False, AxesLabel -> {"f, GHz", "A, 

dB"}, PlotRange -> {{minx, maxx}, {miny, maxy}}], {{minx, xmin, "x-

axis min"}, xmin, Mean[{xmin, xmax}]}, {{maxx, xmax, "x-axis max"}, 

Mean[{xmin, xmax}], xmax}, {{miny, ymin, "y-axis min"}, ymin, 

Mean[{ymin, ymax}]}, {{maxy, ymax, "y-axis max"}, Mean[{ymin, 

ymax}], ymax}]] 

Here quickplot is a chosen name of the roll-up function (can be arbitrary), and 

its arguments data_, xmin_, xmax_, ymin_, ymax_ are the original data set and 

axes limits accordingly. Let the original data set be in the new variable newdata. Then, 

the plot can be obtained as follows: 

quickplot[newdata, 25.86, 37.5, 0.3, 1.125] 

The result is shown in Figure 3. Also, the part of the plot was selected by slider 
controls. 



 

Figure 3. Resulted plot with dynamic scaling 

To sum up, the convenient and functional way of digitized data processing was 

obtained. Moreover, it can be easily modified or corrected if necessary. It is worthy of 

note that such kind of flexible implementation is provided particularly by great 

capabilities of the Wolfram Mathematica computation program, which was used in the 

examples above. 

 


