
V. Draichuk, Master student

A. Panishev, D.E., Prof., research advisor

V. Shadura, senior teacher, language advisor

Zhytomyr State Technological University

THE SIGNIFICANCE OF REACTIVE PROGRAMMING USE FOR THE

DEVELOPMENT OF ANDROID OS APPLICATIONS

Android is one of the most relevant mobile operating system. This operating

system was developed by Google and is based on Linux. The basic element of the

operating system is the Dalvik virtual machine. It is necessary to recognize that the future

of PC – is in a portable devices, tablets, e-books, netbooks and smartphones, and all these

are Android based.

In May 2010, Google achieved 100 thousand activations per day. In December

2010, there were 300 thousand activations. In May, at the Google I/O conference

announced the statistics, according to which about 400 thousand new devices on Android

platform were activated every day. In July 2011, Andy Rubin (Andy Rubin), the Vice

president of Google, who is responsible for the development of Android platform,

announced the overcoming of new limits - 500,000 activations per day with increasing

distribution of platform in the 4.4% per week. This statistics includes only information

about the first registration of new devices.

In July, 2011, there were already sold more than 100 million Android-devices

which had been developed by 36 professionals, their distributed networks reached 215

operators. The productivity of Google Play has overcome a mark of 200 thousand

applications. The results of Google Play are the installation of about 4.5 billion of

application copies. 84% of smartphones were sold in the third quarter of 2014, running

on Android OS. Therefore, the application development for Android today is extremely

important.

While working with Android one can often see how all the functional code in the

methods is based in lifecycle activity/fragment. In fact, this approach has some reasons to

exist - "lifecycle methods" are just the stages of system components and specially

designed filling of their code. In addition, UI framework described by xml-files already

gives us the basic separation of logics and interface. But it is offen difficult to use such

approach effectively and this division is not always possible. It ultimately results in the

developing all the codes in onCreate, which adversely affects the transparency of code

and makes almost impossible its modification and support.

RxJava is a new technology that is now one of the hottest topics of discussion in

the Android-programmers community. The reactive programming is a programming

paradigm, based on data flow and distribution changes. This means that programming

languages should be able to express static or dynamic data streams easily, and implement

the execution model which will automatically send changes via data flow. Resilience,

sensitivity, focus on events and scalability are the main principles of reactive

programming. If one follows them, it will make the work with code easier. Reactive

programming is the development based on asynchronous data streams.It can seem not to

be new. The typical mouse actions are asynchronous so it is nothing new about working

with such kinds of actions. One can create data streams from all entities desired; by not

just the mouse cursor and movements.The flow can inhance anything. These may be the

variables, the information of the user types, the properties, data structures, etc. For

example, the Twitter feed will emit a stream of data in the same way as the mouse actions

such as movement or click. You can listen to the flow and react to it accordingly.

Study the programing features is important because the application of this

technology makes it easier to develop code and handle errors. This technology provides

the extended filter possibilities and helps to make processing results of methods calls

easier.

Some perspectives of using RxJava in Android apps:

─ Usage of RxJava simplifies the multithread RESTful API calls;

─ Usage of RxAndroid optimizes the behavior of basic Android UI

components;

─ Simplified work with threads from the main application.

Using RxJava technology provides many benefits in developing and supporting

apps, first of all the results of all transactions are always predictable. We know about all

the errors and potential problem areas that may arise in the code develpoment and how to

deal them.

The principle of sensitivity in action is as follows. The database connection or

server is maintained due to the timeout, the call will attempt to recover an error. A

caching executes the parallel processing result. The orientation related the events is based

on the process of execution the request, we will always have the responce from events,

successful or unsuccessful completion of the request, the event completion, etc. The code

becomes easily expandable and requires obtain almost no changes. If we need to make a

bug handling or maintaining the stack errors, that can be easily processed by components

of RxJava.

The most appropriate cases to use RxJava are:

─ UI actions as mouse movements, button clicks;

─ The actions related WebSocket API;

─ Events such as changing the features, registration procedure, and so

on.

It is not recommended to use RxJava only to iterate collections, it is much better to

use the regular iterators.

Rx is based on Observer template. The idea of Rx is in the absence of information

about the sequence that is valuable or is over. But one is able to control over when

starting and stoping taking values. The basic building blocks of code are reactive

Observables and Observers. Observable is a source of data and Observer –is a user.

Generation data through Observable always occurs at one and the same course of action:

Observable gives a certain amount of data and exits - either successfully or with error.

Each Observers, signed on Observable, has a method called Subscriber.onNext() for each

item of data flow, after which someone can be called Observer.onComplete() or

Observer.onError(). This is very similar to the regular pattern of "observer", but there is

one important distinction. Observables often begin to generate data before somebody is

subscribed to them.

You can use operators over Observable, such as flatmap, filter, zip, merge, cast,

etc. Operators can be used in between Observers and Observables for manipulations with

data. In RxJava there are many operators, so it would be better to focus on some of them.

─ Create is to create Observable create from nothing by calling observer

methods;

─ From is to convert any other object or data structure in Observable;

─ Map is to transform the elements emitted by Observable by calling the

application function to each element;

─ Timer is to create Observable, which emits one element after the

delay;

─ Start is to create Observable, which emits the function;

─ Filter is to select only those elements of Observable, which pass the

predicate test;

Reactive applications are more resistant to the bugs and unexpected errors, usage

of this technology makes the code clearer and more flexible. Many routine work can be

translated into a library that gets the work done better than Android-base components.

This allows focusing on the implementing the things that really should be developed.

Rx works perfectly with highloaded frontend apps. But the potential of the

technology does not relate only the client side, it works great with the server side and

databases. In fact, RxJava is a key component in server-side API of Netflix. Rx is not a

framework, not limited to one specific type of application or language. This is actually a

paradigm that can be used when developinging any event driven software.

