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Introduction. Neuro-models of associative memory are used in pattern 

recognition robotized systems, biometrical identification and neuro-

physiological processes simulations. It is known a number of models and 

networks as Hopfield, bidirectional memory of Kosko, and others [1, 2]. 

Equivalence models of neuro-network autoassociative and heteroassociative 

memory (HАM) were offered in papers [3, 4]. Simulation results of such 

equivalence models (EM) [5, 6] have confirmed, that the EM has such ad-

vantages as substantial increase of memory capacity and possibility to keep 

highly correlated patterns. These researches of EM HAM have showed that 

these models allow to recognize patterns with considerable percents (to 25-

30%) of damages, at the network capacity which in 4 -10 times exceeds the 

amount of neurons [4, 6]. Appearance of papers [7], the idea of which is 

based on work [3], where mul-tiport neuron networks and multiport auto-

associative memory (MАM) were examined accordingly, stimulates the 

necessity of research of possibilities of EM application for creation of mul-

tiport hetero-associative memory (MHАM). The principles of construction 

realization of autoassociative memory (АM) on the base of EM with time-

pulse integration is described in paper [7]. However, research results of 

such EM АAM/HAM were not shown.  

Thus, the publications review and analysis allows defining as one of 

important tasks, the further researches of EMs, adjusted for realization 

of more general multiport hetero-associative memory (MHAM) architec-

ture, and determination of its performance. Theoretical background and 

models of MHAM were considered in paper [8].  

Presentation of the main material and research results. For organi-

zation of computations, necessity for realization of MHAM, it is desirable 

to use the high-performance specialized processors and architectures. Opti-

cal realization of MHAM. At considerable dimension of input patterns and 

considerable amount of them (this amount depends on the amount of input 

ports) the size of arrays which are processed can arrive to 1024×1024 pixels 

and more. At such dimensions of the processed images only optical and 

optoelectronic implementations will allow to provide the real-time pro-

cessing and recognition-associating by such MHAM. Possible implementa-
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tions of neuron networks (NN), NN AM and bidirectional associative 

memory (BAM) based on optical and optoelectronic realization with spatial 

and time integration are shown in papers [7, 9, 10]. In paper [9] it was 

shown that at processing of 2-D patterns, optical realizations, which are 

based on the use of spatial integration, have some fundamental limitations 

and does not allow providing the substantial increase of amount of memo-

rized in АM patterns and increase of the processing performance. In papers 

[9, 10] it was shown that optoelectronic architecture with time integration 

could give substantial advantages. In addition, the picture type devices, 

described in papers [11 – 12], can be used as the macro-element basis for 

these architectures. 

Therefore, we offer modifications of the known realization of AAM 

with time integration in case of realization of not one-port AAM, but 

MHAM. Differences between MAAM and MHAM at the use of time inte-

gration are unimportant. Actually on the same architecture it is possible to 

realize and MAAM and MHAM. The architecture of MHAM and the pro-

cessed images at different places are shown in Fig. 1. It explains its princi-

ple of functioning. The use of polarization code, polarizer Р1 and analyzers 

А1 and А2 allows to combine simultaneous implementation of member-

wise operations of "equivalence" and "nonequivalence" (in essence the 

operation of XNOR and XOR of binary logic) above images, and also by 

spatial integration of images PPEQ1 and PPNQ1 by micro-lens arrays 

(MLA2, MLA1) to provide the calculation of normalized equivalence and 

normalized nonequivalence of every input character (letters by the dimen-

sion of 40×32 elements) operations from a set of QR (12 letters or 12 ports) 

with every stored and multiplied to 12 copies of the character from the 

learning set PRX1. Aggregate of QR input characters with noise or without 

is given either from a camera or from the corresponding block of feed-back 

to the first LCD1, and the multiplied images (the amount of copies equals 

the amount of ports) Q1, Q2, … Q12 of standard learning characters from 

the set PRX1 consistently are written to the LCD2. Signals at photo-

detectors matrix inputs PDA1 and PDA2 are proportional to signals of 

equivalence (PDA1) of every input port with one of stored characters and to 

the signals of nonequivalence (PDA2).  

These signals are actually coefficients β in corresponding models. If the 

weighing of synapses is done only by this coefficient β, then as it is shown 

in papers [4, 7] needed nonlinear transformations are performed by increase 

of nonlinear factor. If an additional weighing of matrix/tensor of α coeffi-

cient (vectors of 1D data or matrix for 2D data) is used in accordance with 

formulas, then in the MHAM architecture it is necessary to set a corre-

sponding shadow mask after the analyzers А1 and А2. This shadow mask is 
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formed in accordance with the multiplied matrix of coefficients α, which in 

simplest case is formed as a binary matrix. Forming of such matrix from a 

set of learning characters and choice of a binarization threshold will be 

described in the next paragraph. Usage of two such identical shadow masks, 

which skip light only in some chosen part of pixels of every character at 

every port, allows to substantially reducing the degree of nonlinear trans-

formation. It is better to execute such nonlinear transformation in corre-

sponding electronic parallel processing circuits.  

After nonlinear transformation of these signals by the arrays ENCA1 

and ENCA2 of electronic nonlinear transformers, they are given to the laser 

diodes arrays (LDA1, LDA2). Optical signals from corresponding MLA3, 

MLA4 of different intensities, namely such, that a neuron-winner has most 

intensity after nonlinear treatment, and other neutral intensity (≈0.5 conven-

tional unit), after passing of corresponding polarizers Р2 and Р3 and LCD3 

with the analyzer А3, are given to the inputs of photo-detectors array PDA3 

with time integration at every cycle with the record of new Q of the і-th set 

to LCD3. In the first cycle on the input of PDA3 the resultant image ЕЕ1 

are formed from images E1V and E1W, which is the equivalence weighing 

of array Q2 (for MHAM) or array Q1 (for MAAM) by the matrix ЕN1 of 

signals which are formed after nonlinear transformation from the matrix of 

signals Е1 at the inputs of photo-detectors. In the next cycle images ЕЕ2, 

ЕЕ3, which are formed analogically, are added to the resultant image ЕЕ1. 

The resulting image ES is formed at the end of processing and time integra-

tion. By threshold treatment of this image at output from PDA3, we get the 

array of image FV, which is given to the chart of feedback for the next pro-

cessing iteration or to the output of the system. Estimate the possible pa-

rameters of such architecture. Amount of pixels, that is limited by possibili-

ties of LCD will consider be not less than 1024×1024. If input character of 

every port will have a dimension of 32×32=1024 neurons, then an amount 

of such ports in MNNHAM will be no more 32×32. If to take into account 

losses of differentiation between the images at every port then really to 

consider this amount of ports even 20×20. Thus, such realization allows 

recognizing simultaneously about 400 characters with dimension 32×32. 

Amount of reference patterns, which are used for learning of such MHAM, 

can be more than amount of ports. It will result only in the increase of 

recognition time, as an amount of processing cycles is proportional to the 

amount of the interrelated associated pair of reference patterns from the 

learning selection (see Fig. 1 - "Set of teaching for MGAM"). Processing 

cycle can be really in a range of 0.5÷50μS if use modern fast-acting LCD, 

PDA and LDA. At the amount of reference patterns (cycles) 400, summary 

time of recognition of all input patterns will not exceed 0.2÷20mS. Taking 
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into account, that the amount of neurons of every port is equal 1024, and for 

the MHAM it is needed to process 10242 connections, then at the 400 of 

ports productivity of processing can be appraised as 1010-1012 connections 

per a second. 

 
Fig. 1. The MNNHAM architecture with time integration 
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each of 12 ports of MHAM equals 1280. Images of letters of the same 

dimension 40×32, which associated in pairs with input patterns, are used as 

output patterns. We used the next hetero-associated pair of letters : q - w, w 

- e, e - r, r - t, t - y, y - u, u - l, l - o, o - p, p - a, a - s, s - s. The learning set 

can be presented as two images which are shown in Fig. 1  and in Fig. 2a,b 

as corresponding binary matrices RPX1 and RPX1OUT (for the best 

displaying in Mathcad these matrices are self-weighted by a scalar 

coefficient 200). 

Each of these matrices is the association of corresponding 12 matrices 

of every input or output image of letter. If an image, damaged by noise, is 

given to input of MHAM, for example matrix QR (Fig. 2с), which is the 

association of corresponding 12 (for the amounts of ports) input images of 

letters, then depending on an learning set to every letter the number of 

which is formed on a row, and then on a column, the corresponding letter 

associated with it must be at the output of MHAM. In every cycle of 

operation of such architecture with pulse-time integration multiplied images 

of input and output letters from a corresponding set which are the 

corresponding corteges of matrices Q1, Q2,… Q12 and Q1, Q2,…Q12  for 

MAAM or Q1, Q2,…Q12 and Q2, Q3,…Q12 for MHAM must be given to 

corresponding LCD2 and LCD3. They are represented in Fig. 1 and Fig. 2f. 

The corresponding images PPEQA1 and PPNQ1 (see Fig. 2g, h) turn out 

after the analyzers А1 and А2, if the images of QR and Q1 were given at 

the first cycle. Forming of shadow matrix is executed as follows. The 

corresponding multiplied images of every standard letter as matrices R1,... 

R12 are added and the mean-weighed image RMS is formed. Using the 

reference images M and MR (see "RM" in Fig. 2j), coefficient η=0.55 and 

formulas in Fig. 2m, a binary image of fragment AR is formed (Fig. 2k). 

The image is a shadow mask with dimension of 40×32 elements. Moreover, 

the resulting shadow mask from 12 reiterations of AR is formed as a matrix 

ARQ (Fig. 2l). Simulation results of MHAM architecture. After passing 

of such shadow masks which can be set after the analyzers А1 and А2, in 

accordance with formulas in Fig. 2n, the resulting images PPEQ1 and 

PPEQN1 (Fig.2о, р), in which the distinguished area is in accordance with 

the AR fragment, are formed from the images PPEQA1 (equivalence) and 

PPNQ1 (nonequivalence).  

Integration and normalizing with micro-lens (including by coefficient 

k0 (Fig.2m)), are equivalenced to mean value of sub-matrices

( ( 1,0,39,0,31)mean submatrix PPEQ and  ),,,,PPEQN(submatrix(mean 3103901  

in the simulation for example.  
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Fig. 2. Images of input and output letters and formulas in Matcad simulation 

of MHAM. 
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Fig. 3. Simulation result for different power of noise. 

 

 

a) 

b) 

c) 



Секція 1. Математичне моделювання та розробка програмного забезпечення 

18 

 

Therefore, there will be the formed matrices of optical signals at the 

input of corresponding matrices PDA2 and PDA1, that proportional and 

displayed by the matrices Е1 and NE1 accordingly. Using formulas shown 

in Fig. 2q, where 
max 1 12max(max(2 )



  i
i

x E N  and formulas in Fig. 2t of 

nonlinear transformation of matrices EPXi, actually from Е1 and NE1 

matrices E1N and NE1N are formed. They are shown in Fig. 2r, s, u, v and 

as 3D in Fig. 2w, x, y, z.  

The analogical method is executed in every cycle. Fragments of 

MHAM simulation results for recognition of 12 noisy letters of input matrix 

QR with coefficient of non-linearity γ=3 and for different input sets of 

letters are shown in Fig. 3.  

Simulation result for different power of noise 20.1% (а), 30.4% (b) and 

40% (c) for recognition of all 12 noised letters from the first set. In all  

figures (а), (b), (с) the first: the reference patterns set; the second: the noisy 

input letters; the third and the fourth: time-pulse integrated signals before 

their threshold processing; the fifth: output recognized hetero-associated 12 

letters; the sixth: etalon; the seventh: difference in the output and the etalon, 

which is a zero error; in the second rows: intensity of  signals of hidden 

nonlinear neurons and integrated  signals before threshold processing shown 

in 3D.  

As evidently from presented results, the amount of  damaged pixels (the 

power of noise), at which all letters are successfully recognized, can arrive 

to 20 % (Fig.3 а) or 30 % (Fig.3 b) and only at 40 % two letters from 12 

remained unrecognized. 

     Conclusions. The architecture of MHAM based on modified equivalent-

ly models are offered with double adaptive -equivalently weighing (DAEW) 

for recognition of 2D-patterns (images). The MHAM simulation results on 

the concrete samples showed that have considerable capacity, productivity 

and make possible to recognize vectors with considerable percentage of the 

damaged components (up to 25-35 percent).  
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