
Kliuiev I. O., Master’s Student,

Vakaliuk T. A., Dr. Sc., prof.,
Zhytomyr Polytechnic State University

METHODS OF FACE COMPARISON IN DIFFERENT PHOTOS USING COMPUTER VISION

The methods of face recognition in photos for subsequent comparison represent an important and relevant problem

with numerous applications in various fields, including biometric authentication. Typically, face recognition is

accomplished using computer vision tools and convolutional neural networks.

We will employ this technology in a dating and friend-finding application to determine if the photos in a profile depict

the same person who underwent verification. To compare faces in different photos, three steps are necessary:

Extract facial feature vectors from the reference photo.

Extract facial feature vectors from the comparison photo.

Calculate the percentage match of these feature vectors (Euclidean distance between the feature vectors).

Convolutional neural networks are utilized to extract facial parameters. In our case, we will use the ResNet network

from Microsoft without the classification module.

To implement this task, we will use the dlib library, which includes a pre-trained neural network that produces feature

vectors in such a way that feature vectors from photos of the same person are close to each other, while vectors from

photos of different individuals are far apart. In the dlib library, these feature vectors are called descriptors. Essentially,

the dlib library is written in C; however, it also has API packages for other programming languages. In our case, we will

use the Python package.

The algorithm for face recognition and comparison using the dlib library starts with loading pre-trained models, such

as a model for predicting facial landmarks (68 key points) [1] and a model for face recognition [2]. Next, a function is

defined that takes the path to a photo as input, reads the image, detects faces in the photo, optionally displays their

coordinates, obtains facial key points using the shape prediction model, and computes a face descriptor using the face

recognition model.

Then, the created function is called twice to extract face descriptors from two images: the reference image

("reference.jpg") and the one to be compared ("photo_to_compare.jpg"). Subsequently, a function for calculating the

Euclidean distance is used to determine the numerical difference between the face descriptors.

importdlib

fromskimageimport io

fromscipy.spatialimport distance

Use models:

sp=dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')

facerec= dlib.face_recognition_model_v1(

'dlib_face_recognition_resnet_model_v1.dat')

detector =dlib.get_frontal_face_detector()

To avoid code repetition, we put the descriptor in the function

defgetFaceDescriptorFromPhoto(photo):

img=io.imread(photo)

 dets = detector(img,1)

Optionally, display all the faces found in the photo on the screen

for k, d inenumerate(dets):

print("Face found {}: Left: {} Top: {} Right: {} Bottom: {}".format(

 k,d.left(),d.top(),d.right(),d.bottom()))

Getting the shape of the face

 shape =sp(img, d)

Getting a face descriptor

returnfacerec.compute_face_descriptor(img, shape)

Getting a face descriptor from the reference photo

face_descriptor1 =getFaceDescriptorFromPhoto('reference.jpg')

Get the face descriptor from the compared photo

face_descriptor2 =getFaceDescriptorFromPhoto('photo_to_compare.jpg')

Calculate the Euclidean distance between descriptors

distance =distance.euclidean(face_descriptor1, face_descriptor2)

if distance <0.6:

print('The photo shows the SAME person')

else:

print('The photo shows DIFFERENT people')

Fig. 1. Basic face recognition and comparison algorithm

Afterwards, the calculated distance is compared with a threshold value of 0.6. If the distance is less than this value, a

message is printed stating that the photos show the same person. Otherwise, a message is printed indicating that the photos

show different people.This algorithm provides a straightforward mechanism for comparing faces based on their

descriptors, and the threshold value allows controlling the algorithm's sensitivity to differences between faces.The code

itself is shown in Fig. 1.

References

1. GitHub – italojs/facial landmarks recognition, Available: https://github.com/italojs/facial-landmarks-

recognition.

GitHub – ageitgey/face recognition models: Trained models for the face recognition python library Available:

https://github.com/ageitgey/face_recognition_models/tree/master.

https://github.com/italojs/facial-landmarks-recognition
https://github.com/italojs/facial-landmarks-recognition
https://github.com/ageitgey/face_recognition_models/tree/master

