
M. Sidorko, Teacher 

N. Kolisnichenko, Teacher 

I. Kondratiuk, Bachelor Student 

Berdychiv Applied College of Industry, Economics and Law 

 

EVOLUTIONARY ALGORITHMS IN ARTIFICIAL INTELLIGENCE: 

GENETIC PROGRAMMING AND NEUROEVOLUTION 

 

Evolutionary algorithms are viewed as a set of computational methods inspired by 

the natural process of evolution [1, c. 3]. Evolutionary algorithms techniques work by 

improving a population of candidate solutions over multiple generations. Unlike traditional 

optimization methods, evolutionary algorithms do not require gradient information or 

smooth, continuous functions; they are effective in handling complex, non-linear, or even 

discrete problems. At the heart of these methods is a fitness function that evaluates how 

well each candidate solution performs on a specific task. In genetic programming (GP), 

computer programs are represented as tree structures — each node representing an 

operation or a variable. The fitness function scores each program based on its ability to 

solve the problem, such as predicting a data trend or controlling NPC. The best- performing 

programs are selected to form a new generation, mimicking the process of natural selection. 

The creation of new candidate programs relies on two key operators: crossover and 

mutation [2, c. 30]. Crossover takes two parent programs and combines parts of their tree 

structures to produce offspring that inherit traits from both parents. Mutation introduces 

small random changes into a program, such as altering an operation or replacing a sub-tree 

with a newly generated one. These operations help maintain a diverse population and allow 

the exploration of various regions in the solution space. Over time, the evolutionary process 

can yield innovative programs that outperform those designed manually. Neuroevolution 

applies these evolutionary ideas to artificial neural networks. Traditional neural network 

training involves adjusting fixed architectures using methods like gradient descent. In 

contrast, neuroevolution allows both the weights and the structure of the network to evolve. 

A well-known method in this area is NEAT (NeuroEvolution of Augmenting Topologies). 

NEAT starts with simple networks and gradually complexifies them by adding nodes and 

connections as needed. This approach not only tunes the connection strengths but also 

adapts the network architecture to the problem, potentially leading to more efficient and 

tailored solutions. 

One clear advantage of neuroevolution is its ability to discover network architectures 

automatically. Instead of manually designing a network, which can be time-consuming and 

error-prone, neuroevolution explores many configurations and identifies those that perform 

best on the task. This adaptability is especially useful in environments where the ideal 

network structure is unknown or may change over time. 

Example: Applying Evolutionary Algorithms to YouTube Recommendation 

Systems [3] 

To illustrate the practical potential of evolutionary algorithms, consider the case of 

YouTube’s recommendation system. Although YouTube primarily uses deep learning 

techniques and collaborative filtering, the underlying idea of automatically optimizing a 

complex system is very similar to evolutionary approaches. YouTube’s recommendation 

system works in two main stages: candidate generation and ranking. In the candidate 

generation phase, a large number of videos are selected based on the user’s history, 



preferences, and behavior. Then, in the ranking phase, these videos are ordered based on 

predicted user engagement metrics like click-through rate, watch time, and likes. Imagine 

applying neuroevolution to optimize the candidate generation stage. In this scenario, the 

architecture of the neural network responsible for generating candidate videos is not fixed. 

Instead, an evolutionary algorithm could be used to evolve different network 

configurations. The fitness function in this context might combine several performance 

metrics: for example, higher click-through rates and longer watch times would result in a 

higher fitness score. Over successive generations, the algorithm would produce network 

architectures that are better at predicting which videos the user is likely to enjoy. 

Similarly, genetic programming could be used to evolve decision-making rules 

within the recommendation pipeline. For instance, a set of rules determining which video 

features (such as thumbnail quality, video length, or user comments) are most predictive 

of engagement could be evolved over time. The system would evaluate different rule sets 

and select those that lead to better overall performance in terms of user satisfaction. By 

incorporating evolutionary algorithms, the recommendation system could automatically 

discover new, more effective strategies for selecting and ranking videos. This approach 

would reduce the need for manual tuning and could help the system adapt more rapidly to 

changes in user behavior or content trends. Although YouTube's actual recommendation 

system is proprietary and relies on well-established deep learning models, the example 

shows how evolutionary algorithms can be applied in similar large-scale, real-world 

scenarios. 

However, there are also some challenges when speaking about Neuroevolution. 

Evolutionary algorithms often require significant computational resources because they 

involve evaluating many candidate solutions over numerous generations. This can be a 

major drawback when each evaluation is computationally intensive, as is often the case 

with large-scale systems like YouTube's recommendation engine. Furthermore, there is a 

risk of premature convergence, where the population becomes too uniform and gets stuck 

in suboptimal solutions. 

In summary, evolutionary algorithms like genetic programming and neuroevolution 

offer powerful tools for developing adaptive, intelligent systems. Their ability to 

automatically evolve solutions — whether they are computer programs or neural network 

architectures — makes them a valuable area of research in artificial intelligence. The 

example of applying these methods to a YouTube-style recommendation system highlights 

their potential in real-world applications. While challenges such as high computational 

costs and the risk of premature convergence remain, ongoing research and hybrid strategies 

continue to expand the practical utility of evolutionary algorithms. As these methods 

mature, they are likely to play an increasingly important role in optimizing complex 

systems and improving decision- making processes across various fields [2, 135]. 

REFERNCES 

1. Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by 

Means of Natural Selection. MIT Press. 

2. Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press. 

3. CGP Grey. (2017, December 18). How Machines Learn [Video]. YouTube. 

https://www.youtube.com/watch?v=R9OHn5ZF4Uo&ab_channel=CGPGrey 
 

https://www.youtube.com/watch?v=R9OHn5ZF4Uo&ab_channel=CGPGrey

