
Секція 3. Інформаційні системи та технології

189

УДК 004.75

Ожго Ю. А., здобувач

Миколайчук В. В., ст. викладач
Державний університет «Житомирська політехніка»

ДОСЛІДЖЕННЯ ПОПУЛЯРНИХ CONTAINER RUNTIME

Сьогоденний процес розробки програмного забезпечення вимагає

використання найсучасніших та найактуальніших технологій,

методологій та підходів, що дозволяють створювати якісні та практичні

рішення. Одним із таких ключових підходів є застосування

контейнеризації. Контейнеризація – це метод запакування програми з

усіма їй необхідними залежностями, бібліотеками та файлами

конфігурації в єдину, ізольовану від навколишнього середовища

сутність, яку називають контейнером[1]. Контейнери

використовуються при розробці, тестуванні, доставці та розгортанні

продукту і де-факто є стандартом для більшості етапів життєвого циклу

ПЗ.

Середовище виконання контейнера (Container Runtime) – це

програмне рішення, що реалізує стандарти OCI (Open Container

Initiative) та відповідає за створення, запуск і керування контейнерами

[2]. Воно забезпечує ізоляцію й контроль ресурсів на низькорівневому

рівні(low-level) та керування образами й життєвим циклом на

високорівневому рівні(high-level).

До найбільш поширених low-level середовищ виконання відносять

[3]:

- runc – еталонна реалізація специфікації OCI Runtime

Specification для запуску OCI-сумісних контейнерів у Linux. Він

обробляє пакет із файловою системою та конфігурацією і використовує

механізми ядра ОС, такі як namespaces та cgroups, для ізоляції процесу

та управління ресурсами контейнера;

- crun – мінімалістична та високопродуктивна альтернатива runc,

що також реалізує специфікації OCI. Розроблений на мові C, цей runtime

забезпечує швидший запуск контейнерів і оптимізоване використання

ресурсів порівняно з runc. Активно розвивається спільнотою Red Hat;

- runhcs – це розгалуження runc, створене Microsoft для запуску

контейнерів на платформі Windows. Він підтримує контейнери у

форматі OCI і є реалізацією OCI Runtime Specification для Windows. На

відміну від runc, який працює тільки в Linux і використовує механізми

ядра Linux, runhcs взаємодіє з HCS і призначений виключно для

Windows-середовища;

- containerd – середовище виконання з відритим кодом, яке

Секція 3. Інформаційні системи та технології

190

підтримується на Linux і Windows та полегшує управління

життєвим циклом контейнерів за допомогою API. Насправді, дане

програмне забезпечення можна віднести, як до низькорівневих так і до

високорівневих середовищ, за рахунок його можливостей керувати

образами та життєвим циклом, проте, оскільки ми не взаємодіємо з ним

безпосередньо, то його прийнято вважати низькорівневим.

До найбільш поширених high-level середовищ виконання відносять

[4]:

- Docker – це платформа для роботи з контейнерами, що надає

інструменти для розробки, розгортання та управління

контейнеризованими застосунками. У складі платформи інтегровано

containerd, який відповідає за управління контейнерними образами та

виконання контейнерів. Крім того, Docker включає засоби, що

забезпечують взаємодію з Kubernetes;

- Podman – це програмне забезпечення з відкритим вихідним

кодом,

розроблене компанією Red Hat, яке пропонує більш безпечну

модель роботи з контейнерами порівняно з оригінальною реалізацією

Docker. На відміну від Docker, Podman не потребує фонової служби

(демона) і дозволяє запускати контейнери без прав суперкористувача

(root), забезпечуючи більш безпечне та гнучке середовище виконання;

- CRI-O – це легке та мінімалістичне середовище виконання

контейнерів з відкритим кодом, спеціально розроблене для

Kubernetes. Воно реалізує стандарт CRI, дозволяючи Kubernetes

запускати та керувати контейнерами відповідно до OCI стандартів, і є

оптимізованою альтернативою Docker у контексті оркестрації.

Вибір container runtime залежить від потреб проєкту і є критично

важливим для забезпечення ефективної, надійної та безпечної роботи

контейнеризованих застосунків. Основними критеріями оцінки є

сумісність зі стандартами OCI, інтеграція з оркестраторами, а також

продуктивність, витрати ресурсів і рівень безпеки.

Список використаних джерел:
1. Container Runtimes Explained: Security, Types & Best Practices. URL:

https://www.akamai.com/glossary/what-is-a-container.

2. What Is a Container Runtime?. URL: https://www.aquasec.com/cloud-

native-academy/container-security/container-runtime/.

3. What are Container Runtimes. URL: https://www.sysdig.com/learn-

cloud-native/what-are-container-runtimes.

4. Most Popular Container Runtimes. URL:

https://www.cloudraft.io/blog/container-runtimes.

