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ДОСЛІДЖЕННЯ ПОПУЛЯРНИХ CONTAINER RUNTIME 

Сьогоденний процес розробки програмного забезпечення вимагає 

використання найсучасніших та найактуальніших технологій, 

методологій та підходів, що дозволяють створювати якісні та практичні  

рішення. Одним із таких ключових підходів є застосування 

контейнеризації. Контейнеризація – це метод запакування програми з 

усіма їй необхідними залежностями, бібліотеками та файлами 

конфігурації в єдину, ізольовану від навколишнього середовища 

сутність, яку називають контейнером[1]. Контейнери 

використовуються при розробці, тестуванні, доставці та розгортанні 

продукту і де-факто є стандартом для більшості етапів життєвого циклу 

ПЗ.  

Середовище виконання контейнера (Container Runtime) – це  

програмне рішення, що реалізує стандарти OCI (Open Container 

Initiative) та відповідає за створення, запуск і керування контейнерами 

[2]. Воно забезпечує ізоляцію й контроль ресурсів на низькорівневому 

рівні(low-level) та керування образами й життєвим циклом на 

високорівневому рівні(high-level). 

До найбільш поширених low-level середовищ виконання відносять 

[3]: 

- runc – еталонна реалізація специфікації OCI Runtime 

Specification для запуску OCI-сумісних контейнерів у Linux. Він 

обробляє пакет із файловою системою та конфігурацією і використовує 

механізми ядра ОС, такі як namespaces та cgroups, для ізоляції процесу 

та управління ресурсами контейнера; 

- crun – мінімалістична та високопродуктивна альтернатива runc, 

що також реалізує специфікації OCI. Розроблений на мові C, цей runtime 

забезпечує швидший запуск контейнерів і оптимізоване використання 

ресурсів порівняно з runc. Активно розвивається спільнотою Red Hat; 

- runhcs – це розгалуження runc, створене Microsoft для запуску 

контейнерів на платформі Windows. Він підтримує контейнери у 

форматі OCI і є реалізацією OCI Runtime Specification для Windows. На 

відміну від runc, який працює тільки в Linux і використовує механізми 

ядра Linux, runhcs взаємодіє з HCS і призначений виключно для 

Windows-середовища; 

- containerd – середовище виконання з відритим кодом, яке 
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підтримується на Linux і Windows та полегшує управління 

життєвим циклом контейнерів за допомогою API. Насправді, дане 

програмне забезпечення можна віднести, як до низькорівневих так і до 

високорівневих середовищ, за рахунок його можливостей керувати 

образами та життєвим циклом, проте, оскільки ми не взаємодіємо з ним 

безпосередньо, то його прийнято вважати низькорівневим. 

До найбільш поширених high-level середовищ виконання відносять 

[4]: 

- Docker – це платформа для роботи з контейнерами, що надає 

інструменти для розробки, розгортання та управління 

контейнеризованими застосунками. У складі платформи інтегровано 

containerd, який відповідає за управління контейнерними образами та 

виконання контейнерів. Крім того, Docker включає засоби, що 

забезпечують взаємодію з Kubernetes; 

- Podman – це програмне забезпечення з відкритим вихідним 

кодом, 

розроблене компанією Red Hat, яке пропонує більш безпечну 

модель роботи з контейнерами порівняно з оригінальною реалізацією 

Docker. На відміну від Docker, Podman не потребує фонової служби 

(демона) і дозволяє запускати контейнери без прав суперкористувача 

(root), забезпечуючи більш безпечне та гнучке середовище виконання; 

- CRI-O – це легке та мінімалістичне середовище виконання 

контейнерів з відкритим кодом, спеціально розроблене для 

Kubernetes. Воно реалізує стандарт CRI, дозволяючи Kubernetes 

запускати та керувати контейнерами відповідно до OCI стандартів, і є 

оптимізованою альтернативою Docker у контексті оркестрації. 

Вибір container runtime залежить від потреб проєкту і є критично 

важливим для забезпечення ефективної, надійної та безпечної роботи 

контейнеризованих застосунків. Основними критеріями оцінки є 

сумісність зі стандартами OCI, інтеграція з оркестраторами, а також 

продуктивність, витрати ресурсів і рівень безпеки. 
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