Cekuis 1 . MaTemaTiyHe MOJEIIIOBAaHHS Ta po3po0OKa MporpaMHOro 3abe3nedeHHs

YK 004
Shostak Anatoliy, Ph.D., Associate Professor
National Aerospace University «Kharkiv Aviation Institutey

ON MODIFICATION OF THE ALGORITHM FOR
CONSTRUCTING AN AVL TREE

The AVL tree data structure is widely used in data processing system
software as a height-balanced structure that provides logarithmic speed for
search, insertion, and deletion operations [1-3].

Let there be a set of integers S of power N. It is necessary to construct an
AVL tree based on S. Classically [1-3], the Al algorithm for constructing an
AVL tree is used for this task, and the construction of the tree depends on the
order of the elements in S. In algorithm AL, after inserting the next node, the
height balance of the nodes is checked and, if necessary, the tree is balanced
in height by means of single and double left and right rotations of the subtrees.
The result is an AVL tree with a height of approximately logoN. The
complexity of such an algorithm for constructing an AVL tree is O(NlogN).

For the sequence SA consisting of elements (1, 2, 3, 4, 5, 6, 7), the AVL
tree is shown in Fig. 1, and four left rotations were required to balance it in
height.

AN

Fig. 1 — AVL tree for a sequence of elements (1, 2, 3, 4,5, 6, 7)

For the sequence SB (4, 2, 6, 1, 3, 5, 7) of the same numbers, but in a
different order, the AVL tree has the same appearance (Fig. 1), but does not
require a single rotation during construction. That is, the order of the SB
sequence is such that, as a result of inserting keys into the binary search tree,
an AVL tree will ultimately be constructed without the need to check the
balance of nodes and left and right rotations.

A distinctive feature of SB-type sequences is that the median of the entire
sequence is in the first place, the median of the left subtree is in the second
place, the median of the right subtree is in the third place, and so on. That is,
if you preprocess the initial sequence before constructing the AVL tree and
obtain an SB-type key sequence, the result will be the construction of an AVL
tree without the need to check the balance of nodes after each insertion and
perform left and right rotations.

23



Cekuis 1 . MaTemaTiyHe MOJEIIIOBAaHHS Ta po3po0OKa MporpaMHOro 3abe3nedeHHs

It is proposed to use algorithm A2 to construct the AVL tree, which
performs the following steps:

1) based on the set of integers S, obtain the ascendingly sorted sequence
S1 (the complexity of such sorting can be O(N), for example, for the counting
sort algorithm),

2) select the median of the sorted sequence S1 and place it in the first
position in the sequence S2 — this will later be the root of the AVL tree being
constructed (the complexity of searching for the median in this case is O(1)),
the left part of S1 relative to the median forms the nodes of the left subtree of
the AVL tree, and the right part of S1 relative to the median forms the nodes
of the right subtree,

3) recursively continue selecting medians for the left and right parts of
S1 and thus form a sequence S2 of N integers (the complexity of forming S2
is O(N)).

4) construct an AVL tree based on S2 (obviously, it is not necessary to
check the balance of nodes and balance by height for S2).

The complexity of constructing an AVL tree using algorithm A2 is also
O(NlogN), but algorithm A2 has a significantly lower multiplicative constant
for the following reasons. Algorithm A2 uses a more efficient and optimised
sorting operation compared to the more complex and slower operations of
traversing the tree, checking its balance, recursive returns to update the tree
balance, and the complex rotation logic of algorithm Al. Algorithm A2 also
uses faster access to data in a dense array compared to access via links to tree
nodes, which may be scattered across different memory locations, in
algorithm Al.

References

1. Cormen Thomas H., Leiserson Charles E., Rivest Ronald L., Clifford
Stein. Introduction to algorithms: / Thomas H Cormen. — MIT Press, 2022. —
1312 pp. ISBN: 9780262046305

2. Brown Russell A. Comparative Performance of the AVL Tree and
Three Variants of the Red-Black Tree. Software: Practice and Experience,
2025, Vol. 55(9). P. 1607-1615. https://doi.org/10.1002/spe.3437

3. Bounif L., Zegour D. Toward a Unique Representation for AVL and
Red-Black Trees. Computacion y Sistemas, 2019, Vol. 23, No. 2, P. 435—
450. https://doi.org/10.13053/cys-23-2-2840

24


https://arxiv.org/search/cs?searchtype=author&query=Brown,+R+A
https://doi.org/10.1002/spe.3437
https://doi.org/10.13053/cys-23-2-2840

