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АНАЛІТИЧНИЙ ОГЛЯД СУЧАСНИХ АРХІТЕКТУР DNN, 

CNN, RNN ТА TRANSFORMER У ЗАДАЧАХ РЕГРЕСІЇ ТА 

КЛАСИФІКАЦІЇ 

 
Зростання складності реальних даних, їх багатовимірність та 

нелінійність зумовлюють потребу у моделях, здатних забезпечувати 

високу точність апроксимації залежностей у задачах класифікації та 

регресії. Сучасні архітектури глибоких нейронних мереж (Deep Neural 

Networks, DNN) демонструють значні переваги у моделюванні складних 

функцій та роботі з великими наборами даних. Особливої актуальності 

набувають такі архітектури, як згорткові нейронні мережі 

(Convolutional Neural Networks, CNN), рекурентні мережі (Recurrent 

Neural Networks, RNN), мережі LSTM, а також моделі на основі 

механізму самоуваги (Transformers) [1]. Необхідність визначення 

ефективності цих архітектур у регресійних і класифікаційних задачах 

різних типів мотивує виконання комплексного аналітичного огляду. 

Метою дослідження є порівняльний аналіз сучасних архітектур 

нейронних мереж, визначення їх внутрішньої структури, 

обчислювальних властивостей, здатності до узагальнення, ефективності 

у задачах з різними типами даних, а також виокремлення перспектив 

розвитку та застосування. 

Глибокі нейронні мережі (DNN) — це багатошарові моделі прямого 

поширення сигналу, що містять кілька прихованих шарів з нелінійними 

функціями активації та здатні апроксимувати складні функції завдяки 

властивості універсального наближення. 

Згорткові нейронні мережі (CNN) — архітектури, створені для 

обробки просторово структурованих даних. Основою CNN є згорткові 

шари, що виконують фільтрацію з використанням спільних ваг, що 

значно зменшує кількість параметрів та підвищує стійкість до варіацій 

у вхідних даних. CNN забезпечують автоматичне виділення ознак 

різного рівня, що дозволяє ефективно розв’язувати задачі 

комп’ютерного зору та обробки сигналів [2]. 

Рекурентні нейронні мережі (RNN) моделюють залежності у 

послідовних даних за допомогою внутрішнього стану, який 

оновлюється покроково. Основним недоліком класичних RNN є 
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проблема зникання градієнтів, що ускладнює їх застосування для 

довгих послідовностей. 

LSTM (Long Short-Term Memory) покращують базову архітектуру 

RNN завдяки гейтовим механізмам, що дозволяють зберігати 

релевантну інформацію протягом тривалих інтервалів. Це забезпечує 

високу точність у задачах прогнозування часових рядів, обробки текстів 

та визначення трендів [3]. 

Трансформерні архітектури (Transformers) замінили рекурентність 

механізмом самоуваги (self-attention). Структура Encoder–Decoder 

дозволяє моделювати глобальні залежності між елементами 

послідовності та паралелізувати обчислення. Механізм Multi-Head Self-

Attention забезпечує аналіз даних у кількох підпросторах ознак, що 

робить трансформери ефективними у задачах класифікації й регресії, 

особливо на великих масивах даних. 

Сучасні модифікації, такі як ResNet, дозволяють стабілізувати 

навчання глибоких CNN, тоді як оптимізатори AdamW покращують 

збіжність DNN. Використання Batch Normalization та Dropout знижує 

ризик перенавчання. У регресійних задачах найвищу точність 

демонструють трансформери, а у класифікаційних задачах зображень 

— CNN. У задачах з вираженими часовими залежностями LSTM 

зберігають значну перевагу. 

Аналіз показує, що кожна архітектура нейронних мереж має власні 

оптимальні області застосування. CNN переважно використовуються 

для просторових даних, LSTM — для послідовностей, DNN — для 

табличних даних, а Transformers — для задач з глобальними 

залежностями та великими обсягами інформації. Перспективи 

подальших досліджень пов’язані з оптимізацією обчислювальної 

складності трансформерних моделей, створенням гібридних архітектур 

CNN–Transformer та впровадженням методів pruning, quantization і 

distillation для зменшення ресурсних витрат. 
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