
Секція 3. Інформаційні системи та технології

293

УДК 004.7

Войтюк О.В., аспірант,
Державний університет «Житомирська політехніка»

ГЛИБОКО ВКЛАДЕНІ СТРУКТУРИ ДАНИХ ІЗ

БАГАТОЗАЛЕЖНИМИ ЗВ’ЯЗКАМИ: ПРОДУКТИВНІСТЬ ТА

ОНОВЛЕННЯ СТАНУ ПРИ РЕНДЕРИНГУ

Сучасні веб-застосунки дедалі частіше працюють із великими

обсягами складних ієрархічних даних, що містять багаторівневі

залежності між компонентами. Основним викликом у таких системах є

забезпечення високої продуктивності рендерингу та ефективного

оновлення стану. Глибока вкладеність DOM-структур призводить до

значного збільшення кількості повторних рендерів, що знижує

швидкодію, збільшує затримки та погіршує досвід користувача.

Проблема торкається всіх сучасних веб-фреймворків, включно з React,

Angular та Svelte [3, 5].

Різні архітектурні моделі фреймворків по-різному обробляють

глибоко вкладені структури. Жоден фреймворк не є універсальним

рішенням: вибір залежить від моделі використання та вимог до

продуктивності. Велика кількість зв’язків між компонентами

ускладнює відстеження змін стану та призводить до надмірних

оновлень [4].

Серед інноваційних напрямків варто виділити сучасні підходи до

вирішення окреслених завдань [1, 2, 6].

Алгоритмічне сплющення та автоматичне усунення глибини

вкладеності: сучасні дослідження пропонують підходи, які автоматично

перетворюють глибокі дерева даних на плоскі, індексовані структури з

мінімізованою кількістю залежностей. Це зменшує каскадні оновлення

та скорочує кількість операцій diff-аналізу під час рендерингу.

Локалізовані зони реактивності у вкладених структурах:

інноваційні підходи передбачають автоматичне розбиття складного

дерева компонентів на незалежні реактивні сегменти. Завдяки цьому

будь-яка зміна в окремому піддереві не впливає на рендеринг усього

застосунку, що суттєво підвищує продуктивність.

Адаптивна ізоляція стану: методологія, за якої фреймворк

динамічно вирішує, які частини стану мають бути ізольовані

(наприклад, за схемою «state islands»), а які — синхронізовані. Такий

підхід зменшує когнітивні й обчислювальні витрати при роботі з

багатозалежними даними.

Автоматичне виявлення та скорочення надлишкових залежностей:

за допомогою статичного та напівдинамічного аналізу визначаються

Секція 3. Інформаційні системи та технології

294

залежності між компонентами, які не впливають на кінцевий рендер. Їх

відсікання дає змогу зменшити кількість непотрібних оновлень та

скоротити час реконсиляції.

Пріоритезовані черги оновлення: інноваційні scheduling-моделі

дозволяють ранжувати оновлення залежно від рівня вкладеності,

критичності компонентів та змін у потоках даних. Це створює

«розумну» чергу рендерингу, що покращує реактивність інтерфейсу

при великих навантаженнях.

Контекстне кешування глибоких структур: новий підхід

передбачає зберігання проміжних результатів обчислення вкладених

структур з урахуванням контексту використання. Це запобігає

повторному проходженню дерева та скорочує витрати на обробку

глибоких об’єктів.

Отже, ефективність рендерингу визначається комбінацією вибору

фреймворка, моделі управління станом, алгоритмів оптимізації та

використання GPU-спеціалізованих технологій. Вибір оптимальної

архітектури залежить від масштабу застосунку, структури даних та

вимог користувача, а подальші дослідження спрямовані на інтеграцію

методів штучного інтелекту та апаратного прискорення у веб-

середовище.

Список використаних джерел:
1. Curtis, S., & Fischer, B. Gavial: Programming the Web with Multi-tier

Functional Reactive Programming. 2020. URL: https://arxiv.org/abs/2002.06188

(дата звернення: 10.07.2025).

2. Harper, L., Kim, D., & Müller, R. Signal-First Architectures: Rethinking

Front-End Reactivity 2025. URL: https://arxiv.org/abs/2506.13815 (дата звернення:

05.10.2025).

3. Ollila, R., Mäkitalo, N., & Mikkonen, T. Modern Web Frameworks: A

Comparison of Rendering Performance. J. Web Eng. 2022. URL:

https://doi.org/10.13052/jwe1540-9589.21311 (дата звернення: 10.09.2025).

4. Sharma, N., Charan, S., , S., & , S. Performance and Developer Experience

Comparison of Redux, Zustand, and Context API in React Applications. International

Journal on Science and Technology. 2025. URL:

https://doi.org/10.71097/ijsat.v16.i2.5026 (дата звернення: 07.09.2025).

5. Yerokhin, A., & Kameniev, D. Optimizing re-rendering in web applications:

problem analysis and a React-based solution. Management Information System and

Devises. 2025. URL: https://doi.org/10.30837/0135-1710.2025.184.090 (дата

звернення: 07.09.2025).

6. Zhang, Y., Oliveira, M., & Bennett, C. Improving Front-end Performance

through Modular Rendering and Adaptive Hydration (MRAH). 2025. URL:

https://arxiv.org/abs/2504.03884 (дата звернення: 10.09.2025).

