
Секція 1 . Математичне моделювання та розробка програмного забезпечення

41

УДК 004.7

Волинець А.Ю., магістрант

Вакалюк Т.А., д.пед.н., професор
Державний університет «Житомирська політехніка»

АБСТРАКТНА МАТЕМАТИЧНА МОДЕЛЬ ДЛЯ ПОБУДОВИ

РЕАКТИВНИХ СИСТЕМ

Програмні системи, що функціонують на основі автоматичного

поширення змін, називають реактивними. Їх суть полягає в тому, що

зміна стану одного елемента автоматично ініціює каскад змін у всіх

пов’язаних компонентах. Такий підхід дозволяє уникнути явного

керування залежностями між окремими частинами системи та істотно

спрощує логіку її функціонування.

Реактивність має направлений характер, оскільки передавання змін

відбувається від причини до наслідку. Тому в якості абстрактної моделі

найчастіше використовується направлений ациклічний граф (DAG).

Вершини такого графа відповідають станам, подіям або

обчислювальним вузлам, а ребра — причинно-наслідковим зв’язкам

між ними. Відсутність циклів у структурі забезпечує однозначність

порядку обробки змін та запобігає нескінченним ітераціям оновлення.

Однак, як підкреслюється у дослідженні «Sheaf Theory: From Deep

Geometry to Deep Learning» (2025), прості направлені графові структури

обмежені двома рівнями часткового впорядкування (posetal order) та,

таким чином, не здатні повною мірою відобразити складні багаторівневі

відносини, що виникають у реальних динамічних системах [1]. У таких

структурах практично відсутні механізми для опису контекстуальних,

асинхронних та взаємозалежних процесів, які є характерними для

сучасних розподілених та реактивних середовищ.

Формально класична реактивна модель на основі DAG описується

як

𝐺 = (𝑉, 𝐸), 𝐸 ⊆ 𝑉 × 𝑉,
де 𝑉 — множина станів (вузлів), а 𝐸 — множина направлених

залежностей між ними [2]. У таких графах допускаються лише

відносини типу «нижче → вище», що зумовлює обмежений характер

часткового впорядкування та знижує здатність моделі представляти

складні багатовимірні взаємозв’язки.

При поширенні зміни від вузла 𝑣𝑖 до залежного вузла 𝑣𝑗, де (𝑣𝑖, 𝑣𝑗) ∈

𝐸, новий стан формується на основі локальних даних та попереднього

стану джерела. У загальному вигляді це може бути подано як

𝑆(𝑣𝑗) = 𝐹(𝑣𝑗 , 𝑆(𝑣𝑖)).

Секція 1 . Математичне моделювання та розробка програмного забезпечення

42

Проте така модель не враховує контексту виконання, часових

характеристик, рівня активності вузла та інших параметрів, які

впливають на реальну поведінку системи.

Для подолання зазначених обмежень кожному вузлу 𝑣 ∈ 𝑉 може

бути поставлений у відповідність локальний обчислювальний простір:

𝐿(𝑣) = {𝑆(𝑣), 𝐶(𝑣)},
де 𝑆(𝑣) — локальний стан вузла, а 𝐶(𝑣) — сукупність контекстних

параметрів (локальна епоха, версія, умови виконання, пріоритет,

активність тощо) [3]. У такому випадку поширення змін визначається

не лише структурою графа, а й взаємодією локальних просторів, що

дозволяє розглядати багаторівневі та контекстно-залежні відношення.

Запропонений підхід відкриває можливість моделювання більш

складних реактивних систем, зокрема:

- систем з асинхронними подіями;

- багатоконтекстних середовищ;

- систем із динамічною зміною структури зв’язків;

- розподілених обчислювальних процесів [4].

Використання локальних контекстів дозволяє уникнути

необхідності глобальної синхронізації та підвищує масштабованість

моделі за рахунок ізоляції обчислювальних процесів у межах окремих

вузлів і підграфів.

Таким чином, сучасні програмні системи, які реалізують

реактивність, спираючись виключно на модель направленого

ациклічного графа, є обмеженими у своїй здатності адекватно

відображати складні причинно-топологічні взаємозв’язки. Розширення

класичної моделі шляхом введення поняття локального

обчислювального простору створює передумови для побудови більш

гнучких, адаптивних та формально обґрунтованих реактивних систем.

Список використаних джерел:
1. Ayzenberg A., Gebhart T., Magai G., Solomadin G. Sheaf theory: from

deep geometry to deep learning [Електронний ресурс]. – 2025. – 369 с.

(арxiv: 2502.15476). – Режим доступу: https://arxiv.org/pdf/2502.15476,

(дата звернення: 24.11.2025).

2. Harel D. Algorithmics: The Spirit of Computing. – 3rd ed. – London:

Pearson Education, 2004. – 528 p.

3. Abadi M., Cardelli L. A Theory of Objects. – New York: Springer-

Verlag, 1996. – 172 p.

4. Lee E. A., Seshia S. A. Introduction to Embedded Systems: A Cyber-

Physical Systems Approach. – Cambridge: MIT Press, 2017. – 560 p.

https://arxiv.org/pdf/2502.15476

