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ІНТЕРПРЕТОВАНИЙ АНАЛІЗ ОЗНАК ДЛЯ ПІДВИЩЕННЯ 

ТОЧНОСТІ КЛАСИФІКАЦІЇ АНОМАЛІЙ BGP 

 
Протокол BGP забезпечує обмін маршрутизованою інформацією між 

автономними системами (АС), тому його стабільність є критичною для 

безперебійної роботи Інтернету. Помилки в конфігурації, підміна 

префіксів або масові виходи з ладу можуть призводити до дестабілізації 

глобальних маршрутів. Для зменшення наслідків таких інцидентів 

важливо не лише виявити факт аномалії, а й визначити її тип – збій у 

мережі (outage), підміна маршруту (hijack) чи інші форми порушень. Це 

дозволяє обрати відповідну реакцію: від технічного відновлення до 

втручання операторів. 
Для автоматизованої класифікації BGP-аномалій використовують 

десятки ознак, сформованих на основі потоків повідомлень BGP. Проте 

надлишкова кількість або слабоінформативні параметри можуть 

знижувати якість класифікації. Щоб виявити найбільш релевантні 

ознаки, застосовують методи пояснення моделей – Explainable AI (XAI). 

Одним із таких методів є SHapley Additive exPlanations (SHAP) [1], який 

дозволяє оцінити вплив кожної ознаки на результат класифікації як 

загалом, так і для окремих класів аномалій. 
На рисунку 1 представлено результат глобального аналізу ознак за 

допомогою SHAP для базової моделі. Найбільший вплив мають 

характеристики, пов’язані з топологією маршрутів та географічною 

відстанню. Натомість дві ознаки, пов’язані з довжиною префіксів IPv4, 

показали найменші значення важливості. 
 

 
Рисунок 1 – Глобальний вплив ознак на класифікацію аномалій 
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Для перевірки впливу цих ознак на продуктивність моделі було 

проведено два вимірювання: з повним набором ознак (табл. 1) та після 

їх часткового видалення (табл. 2). Модель класифікує три типи 

аномалій: прямі (direct), непрямі (indirect) та відключення (outage). 

Ключові метрики: точність (Precision), повнота (Recall), F1-score. Вони 

характеризують частку правильно класифікованих тестових даних, 

повноту виявлення об’єктів певного класу та баланс між ними 

відповідно. 

 
Таблиця 1 – Метрики класифікації вихідної моделі 

Class Precision Recall F1-score 
Direct 1.00 1.00 1.00 
Indirect 0.87 1.00 0.93 
Outage 1.00 0.67 0.80 

 

Таблиця 2 – Метрики класифікації моделі після вилучення ознак  
Class Precision Recall F1-score 
Direct 1.00 1.00 1.00 
Indirect 0.91 0.99 0.95 
Outage 0.97 0.77 0.86 

 
Після вилучення двох найменш значущих ознак модель почала 

точніше ідентифікувати випадки відключень: показник повноти для 

цього класу зріс з 0.67 до 0.77. Це означає, що система стала виявляти 

більшу частку реальних інцидентів типу збій, не пропускаючи їх. При 

цьому важливо, що якість класифікації інших типів аномалій 

залишилася на високому рівні – тобто вилучення ознак не спричинило 

зменшення точності або зростання хибнопозитивних спрацювань у цих 

класах. Такий підхід дозволяє не лише оптимізувати модель, а й 

підвищити її стійкість до шуму у вхідних даних. Подібні інтерпретовані 

методи можна використовувати і для подальшої оптимізації складніших 

моделей. 
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